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Relative invariants of crystallographic point groups 
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$ Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA 

Received 17 November 1982, in final form I O  July 1984 

Abstract. The authors describe an algorithm for constructing a good polynomial basis for 
the relative invariants associated with any real representation of a crystallographic point 
group (CPG). The novelty here is the universality of the algorithm. It depends on the fact 
that a typical real representation of a CPG has a particularly simple form and has a close 
relationship to a small number of low-dimensional matrix groups whose invariants are 
known and well behaved. 

1. Introduction 

Let G be a group of real n x n matrices. If p(Xl ,  . . . , X , )  is a polynomial in the 
variables X , ,  . . . , X ,  with real coefficients and g = (a,,) is an element of G ,  then we 
let G act on P = R [ X , ,  . . . , X , ]  by g p ( X , ,  . . . , X , )  = p ( Z a , , X , ,  . . . , Xa,,X,). The ring 
P c  of invariants of G consists of all polynomials p such that g p  = p  for all g in G .  

We are interested in describing P c  in case G is the image group of some representa- 
tion of a crystallographic point group (CPG). One may think of the elements of P G  as 
being thermodynamic potentials dependent on certain physical quantities and invariant 
under G .  

A convenient way of describing P G  is as 
d 

P G =  0 t k R [ f l ,  * . . l f " 1  
k = O  

where f ,  , . . . ,f, are algebraically independent homogenous polynomials, to = 1 and 
t , ,  . . . , td are other homogeneous invariants. The set of invariants f , ,  . . . , f n ,  t , ,  . . . , fd 

form what is called a good polynomial basis (GPB) with f , ,  . . . ,f, the free invariants 
and t l ,  . . . , td the transient invariants. Good polynomial bases for selected CPGS are 
given in table 4. 

What we will actually do in this paper is to describe the real relative invariants of 
P in case G is the image group of some real representation of a crystallographic point 
group. We will do  this in a way very close to the description above, utilising the notion 
of goodpolynomial basis for relative invariants (GPBRI) as introduced in Gay and Ascher 
(1984). To explain this, recall that a polynomial p is a relative invariant for G if there 
exists a homomorphism A : G + {+ 1, - I }  such that gp  = A ( g ) p  for all g E G .  In this case 
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p is a relative invariant with weight A. All the relative invariants of weight A are 
gathered into a single vector space PA. Let A denote the set of all such homomorphisms 
A and set P ,  = Z A G ,  PA. From Gay and Ascher (1984) the latter is a subalgebra equal 
to the algebra of polynomial invariants PG where 6 is the subgroup of G equal to all 
g in G such that, for all A in A, A(g) = + I .  A good polynomial basis for PG,  in the 
sense given above, is also a GPBRI for G if both the free and transient elements of the 
basis are also relative invariants for G .  

This paper follows the work of those who have described the standard, three-space 
variable invariants for the CPGS (Meyer 1954, Doring 1958, Doring 1960, Doring and 
Simon 1961, Smith et a1 1963, Smith and Rivlin 1964, Killingbeck 1972, Patera et a1 
1978) as well as those who have displayed the invariants corresponding to the irreducible 
representations of the CPGS and to other special representations (Spencer 197 1, McLel- 
lan 1974, Bickerstaff and Wybourne 1976). This paper is also a partial response to the 
call by Louis Michel in his Montreal lecture (1977) to describe the (relative) invariants 
of a representation given that the (relative) invariants of its irreducible constituents 
are known. 

The mathematical tools on which this paper most heavily depend were developed 
in two papers: Kopskjl (1979a) and Gay and Ascher (1984). The latter was built, in 
turn, on ideas from Capelli (1887), Chevalley (1955), Sloane (1977), Solomon (1977) 
and Stanley (1979). 

The remainder of the paper is organised as follows. In  $ 2  we will give a particularly 
simple description of the real representations of the CPGS and show how the notion 
of twisted representation is useful in this description. In 0 3 we will establish notation 
and summarise the results that we will need from previous work; we will show how 
some of these ideas are connected with the CPGS. In  § 4 we will apply the ideas of § 3 
directly to three examples important for CPGS. The latter will play a central role in 
the description of the algorithm for constructing GPBRIS in 9 5. Finally, in the appendix 
( §  61, we will provide more information about the methods used to obtain the results 
of § §  4 and 5. 

2. Real representations of CPGS 

In the previous section we discussed the invariants associated with a matrix group 
G E GL( n). When G is a CPG and G E 0 ( 3 ) ,  then the natural invariants are considered 
by some as the invariants of G .  However, when thermodynamic potentials are con- 
sidered, the situation is complicated and the language of invariants must be clarified. 

2.1. First simplijcation: Abstract CGPS 

Suppose we want to find a thermodynamic potential depending on given physical 
quantities q , ,  . . . , qn and invariant under a given CPG G .  The first step in the process 
is to determine which representation p of G corresponds to the quantities q l ,  . . . , qn. 
(These quantities usually correspond more directly to a representation of O(3) : the 
question of which representation p of G this latter corresponds to is considered in 
Bickerstaff and Wybourne (1976).) The thermodynamic potential is then an invariant 
(in the sense of P I )  of the matrix group p(G) .  Thus we can replace the problem of 
finding the invariants of p(G)  by the problem of finding the invariants of p(H) for 
every abstract CPG H and for every representation p of H. Since the number of CPGS 
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is 32 and the number of abstract CPGS is 17 (see also the remark at the end of this 
section), this is a considerable simplification. 

By way of example, consider the four (concrete) CPGS 432, a m ,  4’32’ and 5’3”. 
Each is isomorphic to the group s4 of all permutations of four things. The abstract 
group s4 has five irreducible representations which we denote by A , ,  A Z ,  E, T , ,  and T2 
(following the notation of Bradley and Cracknell 1972 for the group 432). In table 1 
we list the representations corresponding to electric polarisation P, magnetisation M 
and stress U for each of the four CPGS. Thus to find a thermodynamic potential 
depending only on electric polarisation and invariant under 432, one looks at the 
invariants of the representation TI of s4. But to find a thermodynamic potential 
(depending only on electric polarisation) invariant under 4’3 m’,  one considers the 
invariants of the representation Tz of s4. The simplification indicated above means 
that, when seeking a thermodynamic potential for one of these four CPGS, one ultimately 
looks at the invariants associated with some representation of s4. 

Table 1. 

~ 

P M U 

~~ 

P, M and U 

432 TI TI A ,  + E  + T 2  A , + E + 2 T , + T 2  
43 m r2 TI A ,  + E i- T2 A ,  + E + 7, + 2 T2 
4’32’ TI T2 A ,  +- E + T2 A , +  E +  T , + 2 T 2  
4’3 in’ T2 T2 A ,  + E + T2 A + E + 3 T2 

- 

- 

2.2. Second simpl$cation: The 14 faithful irreps 

The nature of the real representations of the abstract CPGS leads to a second simplifica- 
tion. Since every representation of a finite group is completely reducible, the main 
building blocks of our representations are the matrix groups p(G)  where G is an 
abstract CPG and p is an irreducible representation of G .  The simplifying fact here is 
that p ( G )  is then one of fourteen matrix groups (arising from the fourteen faithful 
irreps of the abstract CPGS). We will frequently not distinguish these matrix groups 
from the representations whose image groups they are. 

To take advantage of this favourable situation, we need a useful notation-one 
that is reasonably consistent with existing literature and one that distinguishes these 
14 groups. Here are our notational assumptions. 

(1) We denote the abstract cyclic, dihedral, symmetric and alternating groups by 
c,, d,, s, and a, respectively. All abstract CPGS can be created from these using the 
direct product of groups. 

(2) Almost every abstract CPG has a unique, concrete CPG, consisting of pure 
rotations, to which it is isomorphic. For the representations of such groups, we use 
the notation of Bradley and Cracknell (1972), with some slight adjustments due to 
these facts: 

(a) All our representations are real, whereas the tables mentioned above include 
non-real representations. 

(b) The faithful irreps of d3 and d4 are denoted there by the same symbol. 
Table 2 summarises the changes from the Bradley-Cracknell notation. Furthermore 

for the irreps of abstract direct product groups of the form G xc2 having no correspond- 
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ing (concrete) CPG consisting of pure rotations, we adopt the convention 

xC3e=xu 
where X is an irrep of G and B is the faithful irrep of c2. 

Finally, we list the 14 groups in table 3 using all these conventions. 

Table 2. Notational conventions for the real irreducible representations of CPGS 

Abstract CPG Bradley-Cracknell This work 

c3 

d3 

c4 

c6 

a4 

' E  + 2 ~  

AI 
A2 

' E  + 2 ~  

'E, + 2 ~ 2  

Ai 
A2 

AI 
A2 

A ,  
A2 

A ,  
A2 

' E ,  +'E, 

E 

'E + 2 E  

e 

A 
B 

f 

e1 
e2 

A 
B, 
F 
A 
B 
e 

A 
B 
A 
B3 

~ ~~ ~~ ~ ~ ~~ 

Table 3. The 14 matrix groups arising from the 14 faithful irreps of the CPGS. 

Matrix 
group Isomorphic 
(real crystallo- 
faithful Isomorphic graphic 
irrep of Dimension abstract group of Geometric characterisation 
CPG) of rep. group rotations of matrix group 

A 1 CI 1 
B 1 c2 2 
e 2 c3 3 rotational symmetries of triangle 
E 2 d, 32 full symmetries of triangle 
e2 2 '6 6 rotational symmetries of regular hexagon 
El 2 d6 622 full symmetries of regular hexagon 
f 2 c4 4 rotational symmetries of squares 
F 2 4 422 full symmetries of square 
T 3 a4 23 rotational symmetries of tetrahedron 
T, 3 s4 432 rotational symmetries of cube 
T2 3 $4 432 full symmetries of tetrahedron 
Tt, 3 a 4 x c 2  (m3)+ 
TI U 3 s4 x c 2  ( m j m ) ?  full symmetries of cube 
T2u 3 s4 'c2 ( m 5 m ) t  

t Not rotation groups. 
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2.3. Third simplijication: Reflection groups, rotation subgroups and twisted representations 

If G c O ( n )  is a reflection group, then the set of all g c  G with det g = + I  forms a 
subgroup of G called the rotation subgroup of G .  For example, in table 3, the 
matrix groups E, F and T2 are reflection groups and e, f ,  T are their respective rotation 
subgroups. Any irrep of a CPG must be one of these six or be one-dimensional or be 
one of the six “twisted” by a one-dimensional real representation (in a way we make 
precise below). 

Let p :  G + O ( n )  be a representation of G ,  A a one-dimensional (real) representation 
of G .  Denote by A p  the representation ( A p ) ( g )  = A(g)p(g) and call it the representation 
p twisted by A (or just a twisted representation if the context is clear). 

In table 3, the groups T , ,  TI Tzu are all twisted versions of T,; Tu is a twisted T; 
ez and El are twisted e and E respectively?. 

2.4. Fourth simplgcation: A general form for a real representation of an abstract CPG 

The fourth and final simplification of the original problem is related to the way the 
14 faithful irreps can be combined to constitute a typical real rep of a CPG. This is 
described in the following. 

Theorem 1. Let A I ,  . . . , A/, p , , . . . , pm, uI , . . . , U, be one-dimensional real representa- 
tions (not necessarily distinct) of an abstract CPG G .  Then a typical real representation 
of G must be one of the following types: 

I m 

& A , + &  ( ~ J T ) ) + &  (’k7) 

v = E ,  7 = T 2 .  

where 7 =e, T = T or 
I = I  , = I  k = l  

(3 1 

It is understood that in ( 2 )  or (3) the set { A , ,  . . . , A,} might be vacuous, that in (3) 
either {pI,. . . , p m }  or { u I , .  . . , vn} might be vacuous (but not both). 

Sketch of proof of theorem 1 .  Consider the following abstract groups 

c2, C3r c4,d4, d3( = 4, a4, s4. 

Every CPG is either isomorphic to one of these seven groups or to the direct product 
of one of these with one or more copies of c2. The real representations of any CPG 

can then be constructed from the representations of the seven groups above by knowing 
how representations for direct products are constructed from representations of the 
factors. Theorem 1 then follows from this and a knowledge of the irreducible rep- 
resentation of these seven groups. 

t There is possibility for confusion here. To say ‘V is a twisted W’ means that there is a CPG C with two 
representations having image group V and W related as above. There may be a CPG H having W (as an 
image group) but not V. The former group C has the appropriate, non-trivial twisting A ; the latter group 
H does not. 
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Remark. Theorem 1 is also true for an abstract crystallographic Schubnikov point 
group. The argument is the same. See Ascher and Janner (1965) for a list of the 122 
concrete and 25 abstract crystallographic Schubnikov point groups. Thus the results 
of this paper are valid for this larger class of groups as well as for CPGS. 

3. Background and notation 

In  this section we will set the stage for the rest of this paper by establishing additional 
notation and highlighting results from previous work that we will use. Facts that are 
recent are set apart and numbered from (3.1) to (3.9). These appeared in Gay and 
Ascher (1984); (3.4) also appeared in Kopski (1979a). 

We assume that G is a finite subgroup of O ( n )  and that P is the associated 
polynomial ring. For a G-module M denote by M G  the set of all m E M with gm = m 
for all g E G .  Let P,, Pz denote the homogeneous elements of degree m in P, PG 
respectively. Then P = Z P, and P G  = Z P", 

3.1. Complements 

Let I be the ideal in P generated by the invariant polynomials with no constant term. 
If  I,,, = I n  P,, then I = Z, Z, and I, = Zr=, PYP,-, (the latter is not necessarily a 
direct sum). For all k, the subspace P:P,-, is a G-submodule. Thus I ,  is also a 
G-module and consequently it has a G-submodule complement Qm in P, : P, = I,,, 0 Om. 
Let Q = Z  Qm and call Q a complement to I in P. Then 

(3.1) Q is finite dimensional and, if Qm = {0}, PG is generated by Pp,  . . . , P", 

(By contrast, Noether's theorem (1916) states that if IGI is the order of G, then PG is 
generated by Pp,  . . . , P&.)  

Complements for selected CPGS are shown in table 4. For each CPG, a good 
polynomial basis is also shown. For a given group G of matrices, a good polynomial 
basis plus a basis for the complement is what Kopski (1979a,b) calls a minimal 
extended integrity basis for G .  In that paper, adopting language of McLellan (1974), 
he uses the terms numerator and denominator invariants instead of free and transient 
invariants. The polynomials in table 4 also appear in Kopski (1979b). 

3.2. G- Harmonic polynomials and reducible representations 

One choice for a complement can be described as follows. 
Let P E  P, with p = Z  a,, ,n,X8, . . . XIm, a,, I m  E R. Define Dp = Z a,, , , r , ( ? J / ? J X , , ) .  . . 

(d/aX,",). I f  p is not homogeneous, define Dp in the obvious manner. Then each Dp 
operates on P in the usual way. For all m > 0, let H ,  = {q E P,: D p ( q )  = 0 for all 
p E P"} and set H = Z H,. It is clear that H = { q  E P: D,(q) = 0 for all p E P'}. We 
call H the G-harmonicpolynomials. Then H is a complement to I (see Gay and Ascher 
1984). 

For a fixed orthogonal representation p of G, denote by P( p ) ,  P( p) ' ,  I (  p ) ,  H (  p )  
the ring of polynomials, invariants, invariant ideal and harmonic polynomials respec- 
tively associated with the matrix group p(G) .  
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Table 4. Good polynomial basis and complement for selected irreducible representations 
Of CPGS. 

( a )  

Polynomial Polynomial 
degree k basis for Qk 

G-action Polynomial G-action 
on Qk basis for Qk on Qi, 

0 I A same as 
I {U, U }  E for 
2 { U > -  U>, -2ua) E P ( G )  = E  
3 { U3 - 3 uu2} B 0 
4 0 0 0 

Good 
polynomial p2(u, v )  = u’-3uu2(free) 
basis 

p ,  (U, U )  = u 2  + a2, 

p(C)  = F P(C) = f 

Polynomial Polynomial G-action Polynomial C-action 
degree k basis for Qk on Qk basis for Qi on Qk 

A same as 
F for 
BIBB2 P ( G )  = F 
F 
B3 0 
0 0 

A 
f 
B O B  
f 
0 
0 

Good 
polynomial r 2 ( p ,  q )  =p4+q4(free)  
basis 

r l(  P, 9 )  = P 2  + q2. rl, r2( free), 
r 3 ( p ,  q)=pq(p2-q2)( t ransient)  

Polynomial 
degree k Polynomial basis for Qk 

C-action Polynomial C-action 
on Qk basis for Qk on QI, 

0 1 A A 

2 { 222 - x2 - y2, J 3 (  x2  - y I ) } ,  { yz, zx, xy } EOT, as eOT 
3 { (y2 - 2 ) x ,  , , ,}t ,  { (y2 + z2)x, , , .}+ T 1 0 T 2  for TOT 
4 {2xZy2- ( x 2 + y 2 ) z 2 , - 4 3 ( x 2 - y 2 ) 2 2 } ,  EOT, p ( G ) = T 2  eOT 

1 {x, Y, - T2 same T 

{(y2-z2)yz,, . .}t 
5 { ( y 2  - z2)x3, . . .}t T, T 
6 {(x2-y2)(y2- z2)(2-x2)} B 0 0 
7 0 0 0 0 

Good q,  (x, y, 2 )  = x2+y2+ 22, 
polynomial q2(x, y ,  z )  = xyz 
basis q3(x,y, z ) = x 4 + y 4 + z 4 ( f r e e )  (transient) 

+ { A x ,  Y, 2). . . .I means IP(X, Y, z ) ,  P(Z, x, Y ) ,  p ( y ,  z, x)}. 

q l ,  q2, q3(free), 
q4(x, y ,  z) = (x2 - yl)(y* - z2)(z2 - x2) 
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Let p and  U be two representations of G and PO U their direct sum. Let en p denote 

P O . .  . o p .  - 
n copies 

3.3. Complements relative to free invariants 

Let f , ,  . . . ,fn be the free invariants of a good polynomial basis for P'. Then transient 
invariants for the basis can be found as follows. Let J be the ideal in P generated 
by the free invariants. Let J ,  = P, n J so that, because the f;s are homogeneous, 
J = 2 J,. Certainly, J ,  is a G-submodule so that there exists a G-submodule C ,  of 
P, with P, = J,O C,. Let C = I C ,  and call C a complement relative to f , ,  . . . , fn.  

(3 .3)  The transients for the original polynomial basis form a homogeneous basis of 
cG for some relative complement C. Conversely, given a relative complement C, a 
homogeneous basis for C G  together with fl  , . . . , fn constitutes a good polynomial basis 
with the former transient and  the latter free. 

3.4. Cross-term transients 

Now assume p and U are real representations of an  abstract group G with respective 
good polynomial bases f , ,  . . . , f n  (free), t l , .  . . , t k  (transient) and g,, . . . , g, (free), 
u I ,  . . . , U, (transient). 

Let C be a complement in P (  p )  relative to f , ,  . . . , f n  and D a complement in P ( u )  
relative to g , ,  . . . , g,. Let C '  (respectively D ' )  be a G-submodule of C (respectively 
D )  such that C = C'O C'  (respectively D = D G @  D') .  

(3.4) A good polynomial basis for P (  ~ O U )  consists of f , ,  . . . ,fn, g , ,  . . . , g, as free 

(a )  t l , .  . . I  l k r  ut,. . . 1 Uf, 
(b )  t,u,, 1 s is k, 1 s ks 1, 
(c) a homogeneous vector space basis of (C'D')' whose elements we will call 

invariants and  as transients all of the following: 

cross-term transients. 

3.5. Relative invariants 

Recall from § 1 that if G is a finite group, then 6 = { g ~ G :  A(g)= + I  for all A E A }  
where A is the set of real, linear representations of G .  

(3 .5 )  If p : G + O ( n )  is a representation of G ,  then the algebra generated by the 
relative&ariants of p ( C )  is the same as the algebra of invariants of p ( 6 ) .  In other 
words, p(C) = p ( 6 ) .  Furthermore, p(G)  E O ( n )  implies that p ( 6 )  is a group of rota- 
tions. 

corresponding to each of the 14 matrix groups G of table 3 are given 
in table 5. 

The group 
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Table 5. 

Real irreps of CPGS e 

3.6. Polarisation 

Let p :  C + O( n )  be a representation of G with corresponding polynomial basis 
X I , .  . . , X,. For h E p(G)  suppose hX, =I; at,$. For 1 = 1 , .  . . , m let X i f ) ,  . . . , X',) be 
polynomial variables with hXj" = E, a,,X, , i.e., p(C)  acts on Xi'),  . . . , Xif' just as it 
acts on X I , .  . . , X,,. Furthermore, assume that the XI", i = 1 , .  . . , n, 1 = 1,. . . , m are 
algebraically independent forming a polynomial basis for the representation $" p. 
For i ,  j = I ,  . . . , m we define an  operator D, on P($" p )  by D , p  = E k  Xt)(d/dxk'))p, 
called polarisation o f p  with respect to (X',", . . . , X:)) at (Xi", . . . , X:)). 

For a subset S G  p($" p ) ,  we denote by Pol(S) the vector space span of those 
q E P($" p )  for which there exists p E S and integers 1 s i , ,  . . . , i k , j l ,  . . . j k  s m so that 
q = D,,,, . . . D,,,p. The main facts about these notions are as follows. 

( h 

(3.6) Let m 3 n =dim p. For a representation a with harmonic polynomials H ( a ) ,  
let q( a )  = max,{ Hk ( a )  # 0) .  Then we have 

(a )  P($" P )  = Pol(P($" p ) ) .  
(b)  P($" P ) ~  = Pol(P($" PI ' ) .  
(c) H($" P )  = Pol(H($" P I ) .  
(d )  q($" P )  = do" P ) .  
(e) The operator D,,,[ . . . D,,, is a G-module homomorphism. 
(f)  If p(C)  is a rotation group, then N($" p )  = Pol(H($"-' p ) )  and q($ "p )  = 

q($"-' p ) .  If CY = det(X:")l,l,,,,,, then for m 3 n - 1, P ( $ " P ) ~  is the linear span of 
the image of the set P($"-' P ) ~ U  {a} under polar operators of the form Q,,, . . . D1k,4 
( l s i ,  , . . . ,  i k s m ;  l ~ j ,  , . . . ,  j k s n ) .  

3.7. Completing a good polynomial basis 

According to (3.3), if f l , .  . . ,f, are the free invariants and t , ,  . . . , f k  some of the 
transient invariants of a good polynomial basis, then there are many possible choices 
for polynomials sI, . . . , sh so that f i ,  . . . ,fn (free), t , ,  . . . , t k ,  s,, . . . , s h  (transient) is 
also a good polynomial basis. The latter is called a completion of the former. If 
f l ,  . . . , fn  are the free invariants of a good polynomial basis and t , ,  . . . , t k  are the 
transients of degree S m for some completion of f,, . . . , fn, then we say that f,, . , . , f n ,  

t l , .  . . , t k  is a partial completion of f l , .  . . , fn up to degree m. Here is a method for 
obtaining a completion.of f,, . . . ,fn (free) through partial completions. 

(3.7) Let S be a set of polynomials spanning P",l and Ietf,,  . . . , fn ,  I , ,  . . . , t k  be a 
partial completion of f l ,  . . . ,f, up  to degree m. Let di = deg(ti) and  F, = Pi n 
R[fl , .  . . , f n ] .  Select a maximal linearly independent subset B of S whose linear span 
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[Blhas theproper ty [B]n(~ 'd ,+k=m+,  t , F k ) = { O } .  Let B = { S , ,  ..., Sh}. Thenf,, . . . , f n ,  

tl, . . . t k ,  s,, . . . , sh is a partial completion of f , ,  . . . , f n  up to degree m + 1. 

3.8. Essential transients 

(3.8) I fm  > q = maxh ( H h  # {0}), the method in (3.7) will work if the set S is replaced 
by the set { t l t j :  i, j = 1 , .  . . , k, deg( t i t j )  = m + 1).  

Because of (3.8), a set of transients in a partial completion off, ,  . . . , fn  up to degree 
m > q is called essential. The remaining transients in a full completion of f , ,  . . . , f n  

can thus be chosen to t e  products of the essential transients. 

3.9. General algorithm for constructing a GPBRI when the representation is a sum of 
twisted representations of a single representation p 

(3.9) Let p :  G -f O(n) be a representation and p I ,  . . . , pk real linear characters of G .  
Then a GPBRI for P($f==, p,p)  can be chosen as follows. 

(a) Let f,, . . . fn be the free invariants for a good polynomial basis of P( p)".  Let 
C be a complement in P( p )  relative to f , ,  , . . , f n .  Let A I ,  . , . , A, be all the real linear 
characters of G and CA, = { p E C: p a relative invariant for G of weight A,} ,  i = 1,.  . . , 1. 
Then there is C'C C so that C = CA, 0. . .0 CA,@ C' (G-module direct sum). The 
elements in the union (basis for CA,) U (basis for CA>) U. . .U (basis for CA,) form the 
transients of a good polynomial basis for P( p)"  The free invariants of this basis are 
f i ,  . . . ,fn. This good polynomial basis for P(  p)G is also a GPBRI for P( p ) .  

(b) Assume the notation at the beginning of 0 3.6 for the representation ek p. For 
j = 1 , .  . , I k, i = 1, .  . . , n let A1'=J(X(,l), . . . , X ? ) ) .  Choose the free invariants for 
P ( e k  p ) G  to be theAfl"s ( 1  S i s n, 1 S j s k ) .  We take the good polynomial basis just 
obtained fo! P ( p ) "  in (a) and use it in (3.4) to obtain a good polynomial basis for 
P($"-l P ) ~ .  This will be a GPBRI for P(@"-' p ) ,  the free invariants of which are thefll's, 
1 s i s n, 1 c j s n - 1. In what follows, we will only need those transients of this basis that 
are of degree less than or equal to m = q(@"-' p )  + 1 .  

(Note. In using (3.4) inductively to find a GPBRI for P($"-' p ) ,  one must be careful 
to make sure that the cross-term transients for 6 are also relative invariants for G .  In 
the notation of (a), C' is a G-submodule of C. If C"" is C' for the ith copy of P ( p )  
in P($"-' p ) ,  then the elements of a basis for K = ( C'1"C'2". . . C'"-l')" will be the 
cross-term transients. Since c"' , . . C(n- ' '  is also a G-module, K has a basis consisting 
of relative invariants for C . )  

(c) Let U be the set of products tf such that 
( i )  t is a transient of degree s m  obtained in (b) (including t = to= 1 )  or t = 
det(Xi") I = z,ls n (if n s m ) ;  
(ii) f i s a m o n o m i a l i n t h e f , " ~ ,  l s i s n ,  1 S j S n - 1 ,  w i thdegf sm-deg t .  

Then Pol( U )  spans (Zr P , ( e k  p ) ) " .  Use S = Pol( U )  in (3.7) to complete{f,"': 1 c i s n, 
I s j  S k }  up to degree m, thus obtaining a set of essential transients in a GPBRI for 
P(ek P ) .  

(d) For the basis x , ,  . . . , x, O f  p, Suppose gxl = Eh ah1 (g)xh for all g E G .  Then, 
for each i = 1, . . . , k, choose a basis Y!", . . . , Y'," for the twisted representation p , p  

SO that gYj"=E:hp, (g)ah~(g)Y(hl ' .  Let c p :  P(@:=, p ) +  P ( @ % ,  p Z p )  be the unitary 
R-algebra homomorphism defined by cp(X:") = Y:". Then ~ ( G P B R I  in ( c ) )  = GPBRI 

for PC@f=, p,p ) .  
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4. Applications to CPGS. Three important examples 

In this section we will show how the ideas summarised in 0 3 apply to CPGS by 
computing the invariants and/or harmonics for three examples important for our 
algorithm: ( 1 ) good polynomial bases and harmonics for 0" E and e"' e, (2) harmonics 
for T 2 0 T 2  and TOT,  and (3) cross-term transients for (e"' e ) @ ( @ '  T). 

4.1. Example 1. Good polynomial bases and harmonics for Q" E and 0" e. 

From table 4 a good polynomial basis for the invariants of E axid e are {pI,p2 
(free)} and {p l ,  p2 (free), p3 (transient)}, respectively. To describe a good polynomial 
basis for P($" E) and P($" e) = P($"' E), let U,, v, be a basis for the ith copy of E 
(ore) .  Letp:"=p,(u,,u,), i = l ,  . . . ,  m, j=1 ,2 ,3 .  

Choose the set of free elements of a good polynomial basis for P($" E)G to be 
L={p: ' ) :J= 1,2, l s i s m } ,  Use S = P o l ( p , , p , } u ( P ~ l p , ) ~  in (3.7) to obtain apartial 
completion of L up to degree 4. The transients obtained will be a set of essential 
transients of a good polynomial basis. This procedure uses a fact from Weyl (1946, 
p 37) and is a variation on (3.9)(c). 

Similarly, choose the set of free elements of a good polynomial basis for P($" e)G 
tobe{p:":j= 1,2,3,1 s i s m } .  Leta = ulu2-ulu2andproceedasin(3.9)(c)tofindthe 
essential transients. 

Let H (  m) and H ' (  m )  denote the harmonic polynomials in P($" E) and P($" e), 
respectively. Then, using (3.6) plus methods in the proof of (3.6) together with the 
fact from Weyl, we have 

(4.1) (a)  H , (m)=Po l (H , (E) )  with G-action E O . .  .@E. 
(b)  H i  ( m )  = Pol( HI (e)) with &-action e@.  . .@e.  
(c) H 2 ( m )  =Pol(H,(E)) with G-action E O . .  .@E. 
(d)  H i (  m) = Pol( H,(e)) with &-action e@,  . . @ e .  
(e) H 3 ( m )  = Pol(H3(E)) with G-action BO.. .OB. 
(f)  Hi(m)={O}=H,(m).  

4.2. Example 2. Harmonics for T 2 0 T 2  and TOT.  

The non-identity irreducible representations of T2 are B, TI,  T2 and E. Those of 
T are T and e. To describe H, the harmonics of T 2 0 T 2 ,  and H', the harmonics of 
TOT,  we need to adopt some notation. 

Let P,, r2  G P = P(T20T2)  denote those polynomials that are homogeneous of degree 
rl  in XI ,  Y , ,  Z ,  (first copy of T,) and homogeneous of degree r, in X 2 ,  Y2, 2, (second 
copy of T2). Thus, for all k, P k  = $ r , + r , = k  P,,,2. Furthermore, let H,,, = H n Prlr2, 
Hilr2 = H ' n  P,,,,. Since P,,,,, H and H '  are invariant under G so are Hr,r2 and HLlr2. 
Also Hk = @ r , + r , = k  H,,,, and H i  = @ r l + , 2 = k  Hilr2. Table 6 displays the action of G on 
Hrl1, and H:),, by giving the multiplicities of B, E, T, and T2 in each. The action 
of T = T 2  on E is e and on TI  and T2 is T. 

4.3. Example 3. The cross-term transients of a good polynomial basis for the invariants of 

Having found good polynomial bases for the invariants of $" e and 8" T, we can 
use (3.4) to describe a good polynomial basis for the sum of these representations. The 

(8" T). 
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Table 6. Action of T, on t w m o n i c  polynomials H of T 2 0 T 2  and on the harmonic 
polynomials H' of T O T = T , 0 T 2 .  

T,-action by multiplicities 
Homogeneous on H on H' 

Polynomial bi-degree 
degree k rl 12 B E T I  T2 E TI T, 

1 

2 

3 

I O  0 0 0 1 0 0 1  
0 1  0 0 0 1 0 0 1  

2 0  0 1 0 1 1 0 1  
1 1  O l l l l l l  
0 2  0 1 0 1 1 0 1  

3 0  0 0 1 1 0 1 1  
2 1  0 1 2 2 1 2 2  
1 2  0 1 2 2 1 2 2  
0 3  0 0 1 1 0 1 1  

4 0  0 1 1 0 1 1 0  
3 1  1 1 2 0 1 2 0  
2 2  1 1 2 0 1 2 0  
1 3  1 1 2 0 1 2 0  
0 4  0 1 1 0 1 1 0  

5 0  0 0 1 0 0 1 0  
4 1  l O O l O O l +  
3 2  1 0 0 0 0 0 0  
2 3  1 0 0 0 0 0 0  
1 4  1 0 0 1 0 0 1 ;  
0 5  0 0 1 0 0 1 0  

6 6 0  1 0 0 0 0 0 0  
5 1  1 0 0 0 0 0 0  
4 2  1 0 0 0 0 0 0  
3 3  1 0 0 0 0 0 0  
2 4  1 0 0 0 0 0 0  
1 5  1 0 0 0 0 0 0  
0 6  1 0 0 0 0 0 0  

t Except for the lack of subspaces in H'  with T,-action B, this is the first place where H'  
could differ from H by virtue of the fact that relative invariants for T, that are not invariants 
first appear in degree 4. However, the only candidate for a piece of P4 I to appear in the 
invariant ideal for T but not in the invariant ideal for T, is the space SH, o. Here S is the 
subspace of H3 I on which T, acts like B. But the action of T, on S H ,  is like T, so that 
SH, is in the invariant ideal for T, as well as for T. 

interesting part of (3.4) is to determine the cross-term transients of the good polynomial 
basis. We will use the method outlined in the remark following theorem 3 of Gay and 
Ascher ( 1984) to describe the cross-term transients. 

Let H ( e ,  m )  and H(T, p )  denote the harmonics of 0" e and 0' T, respectively. 
Write H ( e )  = H ( e ,  1 )  and H ( T 0 T )  = H(T, 2) .  From (3.7), H(e ,  m )  = Pol(H(e)) and 
H(T, p )  = Pol(H(T0T)) .  In particular, irreducible summands for H ( e ,  m )  can be 
chosen to be of the form d(A) where A is an irreducible summand of H ( e )  and a is 
an appropriate product of polarisations. Similarly an irreducible summand for H(T, p )  
can be chosen to be of the form d ' ( B )  where B is an irreducible summand of H ( T 0 T )  
and d'  is an appropriate product of polarisations. Thus a typical basis element for 
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( H ( e ,  m)H(T, p ) ) "  can be chosen to be contained in a (d(A)a'(B))' .  Now we know 
that (d(A)d' (B))G#{O} iff a ( A ) # { O } # d ' ( B )  and the action of G on a(A) and # ( B )  
are the same. Furthermore, if (a(A)d'( B))' # (0) then also (AB)' # {0} and (AB)' is 
spanned by a single invariant p in case A is absolutely irreducible and by two linearly 
independent invariants p ,  q in case A is not absolutely irreducible. I t  is not difficult 
to show that (aAaB)' is then spanned by a a ' ( p )  in the first case and by dd ' (p )  and 
d d ' ( q )  in the second. 

Thus cross-term transients for (e"' e ) O ( e P  T) can be obtained by applying certain 
polar operators to the cross-term transients of eO(TOT). The only irreducible con- 
stituents of H(e) and H(TOT) on which the G-action is the same are those where the 
G-action is e. For H(e) these are H , ( e )  and H z ( e ) ,  the homogeneous harmonics of 
degree 1 and 2, respectively. For H(TOT) these are K ,  where i j  is a bi-degree in the 
set 

Z={20,11,02,21,12,40,31,22,13,04} 

and K ,  is the unique irreducible constituent in H(TOT) of bi-degree i j  on which G 
acts like e. Furthermore, e is irreducible but not absolutely irreducible. 

Consequently the cross-term transients can be described as follows. 
(4.3) For i = I ,  2 and jk E Z, let Pl,k denote the pair a, b of linearly independent 

polynomials spanning ( H ,  (e) K,,)'. Let a be a product of polarisations from e t o e " '  e and 
let a' be a product of polarisations from TOT to eP T. Then the cross-term transients for 
the good polynomial basis of P (  (e" e)@ (ep T))' are spanned by pairs of polynomials 
of the form ad'( a ) ,  ad'( b ) .  The pairs plrk  are listed in table 7.  

5. An algorithm for finding a good polynomial basis of relative invariants for CPGS 

In this section we will describe a method for obtaining a good polynomial basis for 
the relative invariants ( G P B R I ) ,  in the sense of § 1, associated with any representation 
of a CPG. From what we have seen (theorem 1, tables 4 and 5), it is sufficient to find 
G P B R I S  for the following representations: 

(3 1 &' p, +& V I E  +& A k T ,  

where the p,s, vis and A k s  are one-dimensional representations. 

these once we know G P B R I S  for 
By (3.9) and Theorem 13 of Gay and Ascher (1984) we will know G P B R I S  for all 
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This is what we d o  below. In each case we will describe the free invariants and a set 
of essential transients of the GPBRI.  

Table 7. The cross term transient pairs of P ( u O p )  where u ( G )  = e  and p ( C )  = T O T  as 
described in (4.3). See also (3.4). The variables of e are U, U :  the variables of T O T  are 
x I ,  y , ,  zI (first copy), x2,  y 2 ,  z2 (second copy). 

Ptjk ( in  
notation of 

Cross term transient pairst (4.3) 

PI20 

PI02 

P220 
P202 

PI11 
PZI I 

Pi21 

PI 12 

P22 I 

P212 

PI40 

PI04 

P240 

P204 

PI31 

PI 13 

P23 I 

P 2 1 3  

P I 2 2  

Pz22 

+ Only one polynomial of each pair is given. I n  case the pair is piu, the remaining polynomial in the pair 
can be obtained by replacing U by U and u by -U. In case the pair is pZ2,, the other polynomial can be 
obtained by replacing U' - u z  by 2uc and Zuu by c 2  - U', 
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5.1. Representation of the form 0' F. 

From table 4, a GPBRI for F is 

% = { p 2  + q 2 ,  p 2  - q2(free), pq(transient)}. 

Choose the free part of a G P B R I  for $" F to be L = { p :  +qf, p f  - qf: i = 1, . . . , s}. 
Apply polar operators from F to 8" F on W. In (3.7) use S = Pol(%) to partially 

complete L up to degree 2. This will yield a set of essential transients for the GPBRI 

(of degree s 2 )  by (3 .9) (c) .  

5.2. Representation of the form $' E. 

This was done in 5 4.1. 

5.3. Representation of the form 0' TZ. 

From table 4, the free part of a GPBRI for T 2 0 T 2  is 

{x:+yf+zf,x,y,z,,xf+y:'+zf: i =  1,2}. 

{ (xf - yf ) (y f  - Z f ) (  zf - xf): i = 1,2} 

The essential transients for this GPBRI are 

plus the 28 cross-term transients of degree s 6  in table 8. Let 3 denote the set of 6 
free and 30 essential transient elements of the GPBRI for T 2 0 T 2  together with 

de,[:: il '.I. 
x3 Y3 z3 

Table 8. Crosg-term transients of degree S6 for TOT. 

Bi-Degree? 

1 1  
21 
31 
31 
22 
22 
22 
41 
32 
60 
51  
42 
42 
42 
33 
33 
33 

For every cross-term transient of bi-degree ij there is a corresponding cross-term transient 
of bi-degree j i  obtained by interchanging x I ,  y l ,  zi with x 2 ,  y 2 ,  z 2 .  When i = j ,  the result of 
this interchange may be the same (but not always). 
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Choose the free part of a GPBRI  for P ( @ '  T , )  to be 

~={xf+yf+z~,x,y,z,,x:'+y:l+z:', i =  I , . . . ,  t }  

Apply the polar process to 93 and use S = Pol( 93) in (3.7) to partially complete L 
This will yield a set of essential transients (of degree S 6 )  for the up to degree 6. 

G P B R I  for P ( @ '  T 2 ) .  

5.4. Representations of the form ( @ ' E ) @ ( @ '  T 2 ) .  

The free part of the G P B R I  is the union of the free parts for 
in § §  5.2 and 5.3. 

E and 0' T, as obtained 

The set of transients of the G P B R I  is the union of the following sets. 
( 1) The set of transients of the GPBRI for 0' E obtained from the essential transients 

( 2 )  The set of transients of the GPBRI  for @' T, as obtained from the essential 

( 3 )  The set of products pq where p is from set ( 1 )  and q is from set ( 2 ) .  
(4) A maximal linearly independent subset of S where S is the set of polynomials 

a#( p )  where i) is a polar operator from E to 0" E, a' is a polar operator from T,OT, 
to @' T ,  and p is a relative invariant of E@T2@T2 listed in table 7. 

in § 5.2 using (3 .8 ) .  

transients in 5 5.3 using (3 .8 ) .  

6. Appendix. Methods used to construct tables 6, 7 and 8 

In  this section we will describe the computations which resulted in tables 6, 7 and 8. 
Many of the tools we use are not new. For example, the Clebsch-Gordon coefficients 

and the polynomials in table 9 are known. (See, for instance, KopskL (1976).) The 
method we will use below in case the matrix group is Tz@T2 has been sketched in general 
in Kopskji (1979a). For completeness and ease of understanding, we have included 
most of the tools necessary for its execution. 

The method is recursive: in order to derive facts about homogeneous polynomials 
of degree m, we must first know all pertinant facts about Pk for all k < m. 

Let P = P ( T , @ T , )  and let Q denote a complement relative to P c .  Let Pp4 denote 
the homogeneous polynomials of degree p in the variables associated with the first 
copy of T2 and degree q in the variables associated with the second copy. Since Pp, 
is a G-submodule of P so also is Q,, = Qn Pp4. Our job is to decompose each Qp4 
into G-irreducible subspaces, to find (in some cases) bases for these subspaces and to 
characterise how G acts on them. At the same time we want to find a basis for P:q. 

Step 1. The irreducible action of G occurring in a decomposition of P,,, will be one 
of A, B, E, T, and T?. If 

P,, ,=A@. . . O A @ B O . .  . @ B O . .  .@T,O.  . .@TI -- - 
"I n2 " 5  

then we call n , ,  n 2 , .  . . , n5 the irreducible multiplicities for the action of G in Ppq. To 
determine these multiplicites for Ppy, we use these facts 

(a )  p,, = ppo Po, 
i b )  P ~ O = $ P , = O P : - ~ , O Q + ~  and P o q = $ 4 y = 0 P g q - ~ Q o ~  
( c )  The irreducible multiplicities for Quo and QOu can be obtained from table 4. 
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(d)  If the irreducible multiplicities for Qpo are a , ,  a 2 , .  . . , a5 and 6 = dim P;-;_,,, 
then the irreducible multiplicities for P;-;_,,,Q,, are a ,  6, a 2 b , .  . . , a,b. 

(e) Dim PF-;_,,o can be found easily from table 4 using the fact that T2 is a reflection 
group. 
The multiplicities for Ppo and Poq are then easily found using (b), (c), (d)  and (e). 
From these, the irreducible multiplicities for Pp9 are then determined using table 9 
and the fact that Ppq = P,, Poq = Pp,8 Poq. 

Step 2.  (a )  In table 4, bases for each irreducible constituent of Qp0 and Qou are given. 
(b)  From table 4 and the fact that T2 is a reflection group find bases for P:o and 

PFv ( 2  C p, v s 6). (This may be done simultaneously with step l(c).)  

Step 3. (Recursive Step). Fix positive integers p # 0 and q # 0. Assume that bases 
for P:" have been found for all pairs (p ,  v) with p < p ,  v s q and ( ~ p ,  v )  # ( p ,  9 ) .  

For all such ( p ,  VI'S, assume also that a basis for each irreducible constituent of QPu 

has been found (relative to some decomposition of QUY into irreducible subspaces). 

Srep 4. Find a maximal linearly independent subset Zpq in U { % p , u l  . . . 93;_,kuk: X ,  pi = p ,  
z, v, = q} .  

Step 5. To find a decomposition of QPoQoq into irreducible constituents and find a 
basis for each, first decompose Qpo and Qoq into irreducible constituents: 

Qpo= C i O . .  .O Ck, Qoq = D , O . .  .OD,. 
A basis for each C, and D, will have already been recorded in step 2(a) above (from 
table 4). Next we want to decompose each C,D, into irreducible constituents, find a 
basis for each and how G acts on it. Table 9 shows how to do  this given bases for C, 
and D, and how the group acts on C, and 0,. 

Table 9. Decomposition of the tensor product of two irreducible representations of s4 into 
irreducible constituents. A basis for each constituent is given in terms of bases for the two 
factors. 
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For an irreducible representation I- of G ,  let B(r, p ,  q )  be a basis for the r-par t  
of QpOQOq,  i.e., the subspace of QpOQOq on which G acts like r. 
Step 6. From a( A, p, q )  U =Ypy extract a maximal linearly independent subset Bpq, a 
basis for PFy. (This follows from (3.2).) 

Table 10. T20T2.  Good polynomial basis and basis for a complement. (Only constituents 
where the group acts like B or E are considered. Invariants appear under Irrep A . )  

Homogeneous lrrep 
bi-degree r Polynomial Basis 

20 A x:+y:+z: (free) 
B 0 

E 

I 1  

30 
21 

40 

31 

22 

A xlx2+y,y2 +zlz2 (transient) 
B 0 

1 2 Z I  22 - XlX2  - Y l Y 2  

J%x, x2 - Y l Y 2 j  

A 
B 

E 

A 
B 

E 

A 
B 

E 

41 B 

32 B 

60 B 
SI B 

42 B 

33 B 
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Step 7. (a)  For p s p ,  u s  q and ( p ,  v )  f ( p ,  q ) ,  let r)ly denote the r-par t  of QPY. We 
want to find the r -par t  of IPq = Pp4 n I. In symbols, this is equal to 

Since this sum is not necessarily direct, we will have to work at finding a basis for the 
r -par t  of Ip4 .  In step 3, we already computed bases for PF-)l,4-y and rPv. Thus it is 
easy to find a basis for each PF-)l ,q-vr)lv (it is equal to the set of products!). The 
union of the bases for all summands of (*) is, of course, a spanning set for the r -par t  
of Z p 4 .  We use Gaussian elimination to extract a basis C(T, p ,  q )  from this spanning 
set. From there is it is easy to determine the multiplicity b of r in I p 4 .  

(b) Let a denote the multiplicity of r in Ppq obtained in step I .  Then a - b is the 
multiplicity of r in Qp4. (Warning: a - 6 is not necessarily the multiplicity of r in 
Q p O Q O p ! ! )  Thus a - b determines the dimension of [C(T, p,  q )  u %(r, p ,  q ) ] .  A 
maximal linearly independent subset d ( F ,  p ,  q )  of B(r, p,  q )  such that C(T, p ,  q )  U 

d ( T ,  p ,  q )  is linearly independent, is thus a basis for rpq. This follows from theorem 
2 of Gay and Ascher (1984). This basis is shown in table 10 for certain r. 

The polynomials obtained above can be used to obtain the polynomial pairs P,,k 

described in (4.1) and listed in table 7 .  In  all cases [ p g k ]  = ( CD)e  where G acts on C and D 
according to E and C E Ph ( E ) ,  D E  P,,(T,0T2). Table 9 shows how to find p, ,k  given 
bases for C and D. A basis for each possible C appears in table 4. A basis for each 
possible D is given in table 10. 
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